Optimal Estimation of Large Toeplitz Covariance Matrices

Harrison H. Zhou
Department of Statistics
Yale University

Joint work with T. Tony Cai and Zhao Ren

Outline

Introduction

Motivation from Asymptotic Equivalence Theory

Main Results

Summary

Introduction

Let $\mathbf{X}_1, \ldots, \mathbf{X}_{-}$ be i.i.d. p-variate Gaussian with an unkown Toeplitz covariance matrix $\Sigma_{-\times}$,

Goal: Estimate Σ_{\times} based on the sample $f\mathbf{X}:1$ i ng.

Introduction – Spectral Density Estimation

The model given by observing

$$\mathbf{X}_1 - N\left(0, \Sigma_{\times}\right)$$

with Σ_{\times} Toeplitz is commonly called

Spectral Density Estimation

 \mathbf{X}_1 , a stationary centered Gaussian sequence with spectral density f where

$$f(t) = \frac{1}{2\pi} \sum_{=-\infty}^{\infty} \sigma \exp(imt) = \frac{1}{2\pi} [\sigma_0 + 2\sum_{=1}^{\infty} \sigma \cos(mt)], t \mathcal{Z}[\pi, \pi].$$

Here we have $\sigma_{-} = \sigma$.

Remark: there is a one-to-one correspondence between f and $\Sigma_{\infty \times \infty}$.

<u>Introduction – Problem of Interest</u>

We want to understand the minimax risk:

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} k \hat{\Sigma} \quad \Sigma k^2$$

where k k denotes the spectral norm and F is some parameter space for f.

Motivation from Asymptotic Equivalence Theory

Golubev, Nussbaum and Z. (2010, AoS)

The **Spectral Density Estimation** given by observing each **X** is asymptotically equivalent to the **Gaussian white noise**

$$dy(t) = \log f(t)dt + 2\pi^{1/2}p^{-1/2}dW(t), t \mathcal{Z}[-\pi, \pi]$$

under some assumptions on the unknown f.

For example,

$$F(M, \epsilon) = ff: jf(t_1) \quad f(t_2)j \quad Mjt_1 \quad t_2j \quad \text{and} \quad f(t) \quad \epsilon g.$$

We need $\alpha > 1/2$ to establish the asymptotic equivalence.

Intuitively, the model

X
$$N(0, \Sigma_{\times}), i = 1, 2, ..., n$$

is asymptotically equivalent to

$$dy(t) = \log f(t)dt + 2\pi^{1/2} (np)^{-1/2} dW(t), t \mathcal{Z}[-\pi, \pi]$$

possibly under some strong assumptions on the unknown f.

"Equivalent" Losses

Let $\hat{\Sigma}_{\infty \times \infty}$ be a Toeplitz matrix and \hat{f} be the corresponding spectral density.

We know

$$\left\| \hat{\Sigma}_{\infty \times \infty} \quad \Sigma_{\infty \times \infty} \right\| = 2\pi \left\| \hat{f} \quad f \right\|_{\infty}$$

based on a well known result

$$k\Sigma_{\infty\times\infty}k = 2\pi \, kf k_{\infty}$$

where

$$k\Sigma_{\infty\times\infty}k = \sup_{\|\cdot\|_2=1} k\Sigma_{\infty\times\infty}vk_2$$
, and $kfk_\infty = \sup_j f(x)j$.

Intuitively

$$\|\hat{\Sigma}_{\times} \quad \Sigma_{\times} \| \quad \|\hat{\Sigma}_{\infty \times \infty} \quad \Sigma_{\infty \times \infty} \| ?$$

Thus optimal estimation on f may imply optimal estimation on Σ .

Question

Can we show

$$\inf_{\hat{\Sigma}_{p\times p}}\sup_{\mathsf{F}_{\alpha}}\mathbb{E}\left\| \mathsf{^{\Lambda}_{p}}_{\mathsf{p}} - \mathsf{^{p}}_{\mathsf{p}} \right\|^{2} \quad \left(\frac{\mathsf{np}}{\mathsf{log}\left(\mathsf{pn}\right)}\right)^{\frac{2\alpha}{2\alpha+1}}?$$

Remark: Classical result on nonparametric function estimation under the sup norm:

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathsf{F}_{\alpha}} \mathbb{E} \left\| \mathsf{f}^{\mathsf{\Lambda}} \quad \mathsf{f} \, \right\|_{\mathsf{1}}^{2} \qquad \left(\frac{\mathsf{np}}{\mathsf{log}\left(\mathsf{pn}\right)} \right)^{\frac{2\alpha}{2\alpha+1}}.$$

Again,

We don't really have the asymptotic equivalence.

The following claim is very intuitive

$$\|\hat{\Sigma}_{\times} \quad \Sigma_{\times} \| \quad \|\hat{\Sigma}_{\infty \times \infty} \quad \Sigma_{\infty \times \infty} \|.$$

Show that

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma} \times \sum_{\mathbf{X}} \right\|^{2} \quad c \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some c > 0.

A more informative model

Observe $\mathbf{Y}_1 = (\mathbf{X}_1, \mathbf{W}_1)$ with a circulant covariance matrix $\tilde{\Sigma}_{(2-1)\times(2-1)}$

$$\begin{pmatrix} \sigma_0 & \sigma_1 & \sigma_{-2} & \sigma_{-1} & \sigma_{-2} & \sigma_2 & \sigma_1 \\ \sigma_1 & \sigma_0 & \sigma_{-2} & \sigma_{-1} & \sigma_2 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \sigma_{-2} & \sigma_0 & \sigma_1 & \sigma_{-1} & \sigma_{-2} \\ \sigma_{-1} & \sigma_{-2} & \sigma_1 & \sigma_0 & \sigma_2 & \sigma_{-2} & \sigma_{-1} \end{pmatrix} .$$

Define

$$\omega = \frac{2\pi j}{2p-1}, jjj \quad p \quad 1$$

and where

$$f(t) = \frac{1}{2\pi} \left(\sigma_0 + 2 \sum_{i=1}^{-1} \sigma_i \cos(mt) \right).$$

It is well known that the spectral decomposition of $\tilde{\Sigma}_{(2-1)\times(2-1)}$ can be described as follows:

$$\tilde{\Sigma}_{(2 - 1) \times (2 - 1)} = \sum_{|\mathbf{i}| \le -1} \lambda \mathbf{u} \mathbf{u}'$$

where

$$\lambda = f(\omega), jjj \quad p \quad 1$$

and the eigenvector \mathbf{u} doesn't depend on $f\sigma:0$ m p 1g

The more informative model is *exactly* equivalent to

$$Z = f(\omega) \xi, jjj \leq p \quad 1, Var(\xi) \quad 1/n.$$

For this model it is easy to show

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{f} - f \right\|_{\infty}^{2} - c \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

We have

$$\|\hat{\Sigma}_{\times} \quad \Sigma_{\times}\| \qquad \sup_{\in [-]} |(\sigma_{0} \quad \hat{\sigma}_{0}) + 2\sum_{=1} (1 \quad \frac{m}{p})(\hat{\sigma} \quad \sigma_{0}) e$$

$$= \sup_{\in [-]} |\hat{f}(t) \quad f(t)| + \text{negligible term}$$

based on a fact

$$k\Sigma \times k \geqslant \sup_{\in [-]} \frac{1}{p} h\Sigma \times v, v i = \sup_{\in [-]} \sigma_0 + 2\sum_{i=1}^{\infty} (1 \frac{m}{p}) \sigma e$$

where $v = (e, e^2, \dots, e)$. Thus

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma} \times \Sigma \right\|^{2} c \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

Remark: Need to have some assumptions on (n, p, α) such that the "negligible term" is truly negligible.

Main Results – Upper bound

Show that there is a $\hat{\Sigma}_{\times}$ such that

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma} \times \Sigma \right\|^{2} C \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some C > 0.

Main Results – Upper bound

Let $\Sigma = [\sigma \ 1_{\{ \leqslant -1\}}]$ be a banding approximation of Σ_{\times} ,, and $\tilde{\Sigma}$ be a banding approximation of the sample covariance matrix $\hat{\Sigma}_{\times}$. Note that $\mathbb{E}\tilde{\Sigma} = \Sigma$. Let $\hat{\Sigma}$ be a Toeplitz version of $\tilde{\Sigma}$ by taking the average of elements along the diagonal.

We have

$$\left\| \hat{\Sigma} - \Sigma \right\|^2 - 2 \left\| \hat{\Sigma} - \Sigma \right\|^2 + 2 k \Sigma - \Sigma k^2 - 8\pi^2 \left(k \hat{f} - f \cdot k_{\infty}^2 + k f - f \cdot k_{\infty}^2 \right) \right\|$$

since

$$k\Sigma \ k \leqslant 2\pi \ k f \ k_{\infty} = \sup_{[-]} j\sigma_0 + 2\sum_{=1}^{-1} \sigma \cos(mt)j.$$

Main Results – Upper bound

Variance-bias trade-off

Variance part:

$$\mathbb{E} k \hat{f} \qquad f \quad k_{\infty}^2 \quad C \frac{k}{np} \log(np).$$

Bias part:

$$kf f k_{\infty}^2 Ck^{-2}$$
.

Set the optimal k:k

$$\left(\frac{1}{\log}\right)^{\frac{1}{2\alpha+1}}$$
 which gives

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma} \times \Sigma \right\|^{2} C \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

Remark: For simplicity we consider only the case k

Main Result

Theorem. The minimax risk of estimating the covariance matrix Σ_{\times} over the class F satisfies

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} - \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}?$$

under some assumptions on (n, p, α) .

Remarks Full asymptotic equivalence?
Sharp asymptotic minimaxity?

