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Introduction

Let X4,...,X,, beii.d. p-variate Gaussian with an unkown Toeplitz covariance

matrix i,xp,
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Goal: Estimate X,x, based on the sample fX;:1 ¢ ng.




Introduction — Spectral Density Estimation

The model given by observing
X1 N(0,3,%p)
with >, Toeplitz is commonly called
Spectral Density Estimation
X1, a stationary centered Gaussian sequence with spectral density f

where
F) == S opexplimt) = Lo +23 ocos (m)], 2| 7.7]
= — onexp(imt) = —|o O COS (mt)|, .
2T = P 2T v —
Here we have o_,,, = 0,,.

Remark: there is a one-to-one correspondence between f and Yooy oc.




Introduction — Problem of Interest

We want to understand the minimax risk:

inf sup EKY k2
S F

where K K denotes the spectral norm and F is some parameter space for f.




Motivation from Asymptotic Equivalence Theory

Golubev, Nussbaum and Z. (2010, AoS)

The Spectral Density Estimation given by observing each X; is

asymptotically equivalent to the Gaussian white noise
dy; (t) = log f(t)dt + 27" 2p~Y2dW; (t), t 2 [ 7, 7]

under some assumptions on the unknown f.

For example,

Fo(M,e)=Ff:jf(t:) f(t2)i Mjty 1% and f(t) €g.

We need o > 1/2 to establish the asymptotic equivalence.




Intuitively, the model
X; N(O,Xpp),t=1,2,...,n
is asymptotically equivalent to
dy (t) = log f(t)dt + 27"/ (np) 2 dW (t), t 2 [ 7, 7]

possibly under some strong assumptions on the unknown f .




“Equivalent” Losses

Let Yoovo, be a Toeplitz matrix and f be the corresponding spectral density:.

We know

A

Emeaa Ekmxu4|::2ﬂ

ol
based on a well known result
KX ooxook = 2k fK__

where
KX ooxooK = sup K¥ooxaotK,, and Kfk =supjf (z)j.

[¥ll,=1

Intuitively
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Thus optimal estimation on f may imply optimal estimation on ..

)
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Question

Can we show

_ 2 np 2 +1
inf supE "
,\p F P P PP IOg (pn)

Remark : Classical result on nonparametric function estimation under the sup
norm:

2 Ty
inf supE ' f b
Noo F 1 log (pn)




Again,
We don’t really have the asymptotic equivalence.

The following claim is very intuitive
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Main Results —Lower bound

Show that

2a

2 ( np ) _2a+1
C
log (pn)

A

)

inf supE >

Zp><p -/T"oz

pPXp pPXp

for some ¢ > 0.
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Main Results —Lower bound

A more informative model

Observe Y| = (X1, W;) with a circulant covariance matrix f](zp_l)x(gp_l)

( 00 01 Op—2 Op—1 0Op—2 09 01 \
01 00 Op—2 Op—1 )
Op—2 X)) 01 Op—1 Op—2
Op—1 Op—2 01 (X)) 09 Op—2 Op—1
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Define

. .
1 17 p
and where

fp(t) = % (Uo + 2 Z Oy, COS (mt)) .

It is well known that the spectral decomposition of i(gp_l)x(gp_l) can be

described as follows:
i(gp 1)x(2p—1) — Z A ujuj

171<p—1

where
A= Jp (wj)a Iyl p 1

and the eigenvector u; doesn’t depend on fo,,, : 0 m p 1g.
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Main Results —Lower bound

The more informative model is exactly equivalent to

Zj=fp(wj)&, ji<p 1L,Var(§) 1/n.

For this model it is easy to show

2a

2 ( np ) _2a—|—1
C .
50 log (pn)
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for

sup £
Fa
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Main Results —Lower bound

We have

A

ZPXP ZPXP

p
sup | (o9 00)—|—2§ (1 ;)(O‘m Opm) €™
m=1

te[—m ]

= sup |f(t) f (t)| + negligible term

te[—m ]
based on a fact
1 p m ,
kszpk 2 sup -— thxpvt, Uti — Sup |0y + 2 Z(l _)O_mezmt
te[—m x| P te[—m 7 m—1 p
where v, = (e, e, e, Thus
9 2o
~ np 2a+1
sup K [[X2 > C .
il e (bg <pn>>

Remark: Need to have some assumptions on (n,p, «) such that the “negligible
term” is truly negligible.
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Main Results — Upper bound

Show that there is a ¥, such that

2a

2 np ) T 2a+1
C
<1Og (pn)
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sup K
Fa

for some C > 0.
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Main Results — Upper bound

Let 3Xp = [0m1im<r—11] be a banding approximation of ¥,,,, and S be a
banding approximation of the sample covariance matrix f]pxp. Note that

EX, = . Let 3» be a Toeplitz version of X, by taking the average of elements
along the diagonal.

We have

2

A

Sr %,

A

2 A
280 Sl 42ksy Bk set(kfr ki Ak KL

since
p-1
kXpk <27 K fp Koo= sup jog + 2 Z O cos(mt)].
[—7 7

7] m=1
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Main Results — Upper bound

Variance-bias trade-off

Variance part:

Ekfk fr K2, Cﬁlog(np).
np

Bias part:
Kfr fp k2 Ck*.

1

Set the optimal £ : koptimai ( L )m which gives

lognp

2a

2 np ) 20+l
C
<10g (p2)

Remark: For simplicity we consider only the case Koptimar D

AN

) by

pXp pXp

sup K
Fa
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Main Result

Theorem. The minimax risk of estimating the covariance matrix X, over the
class F. satisfies

2

2 ( np ) T 2a+1 )
log (pn) |

AN

) )

inf supE
Ypxp Fa

pXp pXp

under some assumptions on (n, p, ).
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Remarks

Full asymptotic equivalence?

Sharp asymptotic minimaxity?
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Summary

We studied rate-optimality of Toeplitz matrices estimation.
Le Cam’s theory plays important roles.

Full asymptotic equivalence and sharp asymptotics remain unknown.
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